
PLANE PROBLEM ON OSCILLATION OF A BODY 
UNDER TWO SURFACE-SEPARATING LIQUIDS 

(PLOSRAIA ZADACUA 0 KOLEBANIIAKH TELA POD POVEUNOST'IU 

RAZDELA DVUKB ZBIDKOSTBI) 

PYM Vo1.22, No.6, 1958, pp.789-803 

V.S. VOITSENIA 
(Rostov-on-Don1 

(Received 14 October 1957) 

The problem on steady oscillations of a body of arbitrary shape under a 
free surface of an infinitely deep liquid has been solved by Kochin [ 1 1. 
The same problem for finite depth has been investigated by Haskind [ 2 I, 
using Kochin’s method. 

Here we investigate a plane problem of wave motions induced by oscilla- 
tions of a body under a surface of separation of two liquids, by Kochin’s 
method; the layer of the lighter upper liquid of finite thickness has a 
free surface, and the lower liquid has an inifinite depth. 

1. Statement of the problem. Lt the body oscillate periodically 

under the boundary of separation (Fig. 1). We will investigate infinitely 

small oscillations of a body, making usual assumptions of linear wave 

theory. We assume that waves propagate on both sides of the body, so that 

the liquid velocities are everywhere bounded and approach zero as y’ q-m. 

‘lhe boundary conditions on the free boundary, on the boundary of separa- 

tion, and on the contour of body C, will be transferred on the lines 

y’ = 0, y’ = -d and on the contour C respectively; this last is assumed to 

be stationary. 
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Assuming a potential motion, in this analysis we introduce the velocity 
potentials @.‘(x’, y’, t’), stream functions 

complex poteikials 

kVj' (2’9 t') = @j'(X'* ?J', t') + 

where z’ = x’ + iy’ and the index j is equal 

lower liquid respectively. 

V(j’w, y’, t’)andthe ' 

i'k'j' (S’, y', t') 
(f-1) 

to 1 and 2 for the upper and 

By usual means we obtain the condition on the free boundary 

and two conditions on the boundary of separation 

(1.3) 

(1.4) 

The equations of the free boundary and of the boundary of separation 

have the form 

6,’ (z’) = 1 
g (P2 - Pd Cf.3 

f---d 

where ?jl’(n’) is measured from the axis x’, and $‘(n’) from the line 

y’ = -d. 

Since boundary conditions are linear we may consider only purely har- 

monic oscillations of the body with frequency k, determined by the formula 

u ’ _- 71 -%I ’ (s’) cos X-t’ + 7&z (s’) sin kt’ = 2),’ (s’, t’) 

where v,’ is the normal velocity component of one of the points of the 

contour C; to that point there corresponds an arc length s’ measured from 

some fixed point on C. 

Then for function Oz’(x’, y’, t’) we have the condition of streamline 

flow on C 

a0,‘ 
- = Vn’ (s’, t’) 

J/l 
(1.6) 

Assuming the oscillations of fluids to be steady, we take 

CD,’ (d, y’, 1’) = yjl'(Z', ?J’) COS At’ + 'pjz' (d, y’) sin kt’ (1.7) 

where (bj,‘(x’, y’) = lk vim ‘(2’) if m is equal to 1 and 2. We will then 

have 
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Wj’ (2’9 t’) = Wjl' (2’) COS kt’ + Wjz' (2’) sin kt’ (I.81 

‘Ihe boundary conditions (1.2), (1.3), (1.4), (1.6) will be rewritten 

as follows: 

r f%n’ 
g ay* - - k2~,,’ I +%7l’ %$n’ 

y’q = 
0, [ ay’-- dy ’ 1 V’C-_d = 

0 

[ 
(gz$ - n2lp,mQ- ;(g * _ II 

(1.9) 
k2Y2m’ v’=_-d = 0 

~%n’ - = Vnm’ (s’) an 

We introduce dimensionless quantities, denoting 

z’ = zd. II’; = Wjkd2, wji = wjikd2, 

t’= $-, p?- k2d 

Pl 
-p;, -=v 

g 
(1.10) 

Denoting by E, the region occupied by the upper liquid, and by E, the 

region occupied by the lower liquid, we can formulate the problem in the 

following manner. 

It is necessary to determine functions mlmo(z) and UJ,~‘(Z), which are 

analytical in regions E, and E, respectively, and which satisfy the con- 

ditions 

1”. ET!$- - qJ,mO = 0 for y z= 0 (1.11) 

aQ2,,,’ 2”. z$L_= 0 for 2/ = - 1 
(JY 

(1.12) 

3”. ““:;O 
f 

0) _ $i “;;O 
- V:;lTTL 

\ 
‘q2nr 

0” 
\ 

,‘O for ?/ = - 1 (1.13) 

4. On the free boundary and on the boundary of separation the waves 

move out on both sides of the contour of body C. 

5. In regions E, and E, outside the contour C the velocities are 

bounded and approach zero-as y + - 00. 

f-j”. f$ = V,,m (s) on C 

Using relations (1.7), (l.ll), (1.2) and (1.13), 

free boundary and of the boundary of separation can 
form 

(1.14) 

the equations of the 
be written in a final 



1124 V.S. Voitacnia 

6, (5) = - Im 
dw12’ 

sin t - - 
dz cost 

I y=o 

6, (3~) = Im 
I 

dw;,” d,n . . o 
F 

dz 
sin t - --& cos 1 1 l/=-l 

(1.15) 

(1 .lG) 

where j is equal to 1 or to 2. 

2. Ihe case of a pulsating vortex and a source. Assume at sane 

point [ = { + iq of the region - 1 > Im z > - OQ a pulsating vortex of 

intensity (r, cos t + IT2 sin t ). Then from functions w . 
I” 

O(z) it is 

possible to separate the singularities at point 5 

Wjrn’ (z) = Wjm (z) + Fm (z) (2.1) 

where wla(z) and toZI(z) are functions, analytical in regions 0 > Im z > 

-land- l> Imz>- 00 respectively, whereby 

F,,,(z)== & ins 

Differentiating equations (1.11) and (1.13) 

wja = cjji + i$i, and 

(2.2) 

with respect to x, we can 

rewrite the first three boundary conditions from Section 1 in. the form 

I eJ,m %rn - - -I - 
iJxoy ax 1 y=. = fim(4 (2.3) 

[ %*I %m --- 
dy 8Y 1 = 0 

8=-l (2.4) 

K - -~~j-~~~~~-~~)]~=_~=(l-PaO)fim(~) (2.5) 
a%jm 
&dY 

where 

/lm (4 = Im 1% + iv +],=. , lsnl (5) = Im [ $ t 

Introducing the expressions for F,(Z) in formulas (2.6) 

known equations 

. dF, 
LV - 

dz 1 f/=-l 

(2.6) 

and using the 

.__!.?-!- = ” 
CD 

I C--A i u 1 ~0s LxtlX, 
x:: - T,? 

__._- 
2.’ + y’ 

(“’ + ;- == - * e--i 1 u 1 x (‘OS kxczk I 
0 0 

we obtain 
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f2m (zj = + j eiq (i. siah i. -i- Y cash i.) cos i. (z - 5) &\ 
(2.7) 

We seek the solution in the form of Fourier integrals 

WlT&) = 
q 

{[A (A) + i13 (A)] rixfzq) + [C(h) + iD (A)] eix(z--T)} $ 

using condition 5 to ensure boundedness of functions dwjno/d z. 

(2.8) 

w,, (z) = r,,, 7 IE (A) + iG (A)] e-*A(+:) -$ 
0 

Introducing the functions I. into conditions (2.3), (2.4), (2.5) from 
(2.8) and using relationships R.7), we obtain the equations for detemin- 
ation of coefficients, from which we will find 

A (A) = 0, 

- ; [(A + v) e2A -(h-v)]] =B 

C(A) = 0, D(A)=Z.[*.e -2;. + + [(A + r) - (A - v) ews]} = D 

(2.9) 
E (A) = 0, c (A) = 21 0) 

x (i. - v) T (A) = 
G 

L (A) = - Y2 + x (A2 sinh2 h - Y* cosh2 h) 

T (A) = 2v + x [(I. + v) e-zi. - (h - Y)] (K = pa0 - 1) (2.10) 

It is easy to see that for any v > 0 the equation T(X) = 0 has one 
positive root h = A, and one only. Since the integrands for functions 
dwjjr/dz have two simple poles h = v and A = A,, on the real positive 

semi-axis A, we will take the Cauchy principal values of the integral. 

2. To find the general solution, to the obtained functions toil(r) we 
will add the potentials of the free waves 
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where Am’, Bmo, . ..) G&O are constants. Therefore 

wlmo (z) = &_ In s- + ir, r [ Be-ik(z-c) + 

0 

The unknown constants will be determined from condition 4O, according 

to which the waves propagate in both directions from the vortex. 

To determine the asymptotic values of functions dSm/dz for x < 0, we 

will write them in the form 

dw*m L (VI 
dl= r,,.,” Ge-W-7) dj, + 2ir,,, T e-iv(z-~) + I 

L+ 

+ 2ir, L (ho) 
(I.0 - v) 1” (ho) 

e-iAo(z-cj 9 z<o 

where L, is the contour in the plane of the complex variable X (Fig. 21, 

and 

T’ (ho) = ( gAEho 
Integration by parts shows that the integral along the contour, 

F 

L, m- 
0 #A 

L_ 
Fig. 2. 

L, approaches 0 as x + - ~1, consequently 

1 %m 
Jim I- [ir,&++vcz--C) + il’,G,e-‘A. (2-G ] L- 0 (2.13) 

X-P) 
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where 

E,, ==2+, Go = 
2l. 0,) 

v (X0 - v) Y” w 

Utilizing the integral along L_, we similarly obtain 

(2.14) 

lim d%n 

x-+=J 
dz + [~&,,E,e-W~-~, + &,G&L.‘f=?‘] = 0 

1 
(2.15) 

Inasmuch as the waves propagate in both directions from the vortex, 

the asymptotic expressions for the full complex velocity can be written 

in the form 

llm q_ 
( 

[E_oe-iv(z-fi -if+ G oeiA,(f-~ -iLJ\ =() - 
x--m / 

(2.16) 

lim 
1 

dWz _ _ [E+oe-iv(z-<) +it + G+oe-iA,(z-~) + it] 
d: > 

=-_ 0 
x *+a3 

Taking formula (1.8) into account, we will have 

dlYj _ dwj,” dWja” 
-_ 

dt 
-cost+ - 

dz dz 
sin t (2.17) 

Introducing the expressions (2.13) and (2.15) in the formula (2.17) 

and then comparing it with (2.16), we finally obtain 

E,” = - il-‘, +, Ez3 = iI -$ 

E_” = (iFI - r,) E,, E,” = - (Xl + r,) E. 

G,” = - iI’, -+ , GzO = iI * 
(2.18) 

G_” = (irl - r;) G,,, G,” = - (ir, + r,) GO 

Similarly it is possible to find the asymptotic expressions for d W/dz 

1 

dW, 
lim dz- [A_oe-iv(z-&if + Lj_“~-ih,(r--rj-if + C oeih,(t-c)+i/ 

XCUD 
I) = 0 

Urn 
1 
s -[A+ o&v@-T)+it + B + Oe-iA&-&it + C +“eiL(~-O-i~] 

X*+0- \ 
= 0 (2.19) 

and also the values of the unknown constants 
(2.20) 

,““=,;T ,BAz;;;r<y ,BA:_;y-r,, A,, A,O = - (ir, + r,) A, 

lo - 
. Bo 

21, 9 z" 
80 

' lx"7 -O---L1 - r,) B,, B+O = - (iI’, + r,) Iz, 

C,” = - irp 2 , C,o = irl $- , C-0 = (Xl + r2) C,, C,” = - (ir, - r2) Co 
n 
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where 

A, - 2% = &, B, = L (LJ P-x 00 - 41 ) 
v (ho - v) I” 

co = ;;,y, e_*, (2.21) 
" 

3. For a source of intensity ( Q, cos t + Q2 sin t 1 , situated at the 

point 5 = [+ ia, it is possible by the same method to obtain complex 

potentials 

+ A’~e--iV(& + B”,” e--Udz-_r! + C,Oo&W-C), wzz (2) = 2 ]n (z-[)(2-t) + 

+ Q,iGe-. h G r)i b-7) _dh + E e-i~(z-~~ + Gm~e-'A.(~--) (2.22) 
0 

and the asymptotic expressions of conqlete complex velocities 

hJ’-[ _ _ A Ooe-iv (t-%-it + B ~e-tX,~r-&-if + C_-‘eia,(z-~)+” 
1 

\ = 0 

I 

I’ti,“m I ‘s - [A+“"e --Lv(z-fj+it + B + “e-ix&-?) +it + C+o,$(z-U-if] = 0 (2.23) 
i 

xl~w{dz _[E_m,+v(z-&it + G_~~e-ile(z~U-ifJ) =() 

x$,“m ‘2 _ [E,“oe-iv(z-?)+i~+ G+EOe-iU 

i 

4+i~]) = 0 (2.24) 

here 
Aloo =-Q+ A+Q$', A_""=(Q,+iQ,)A, 

BjlOO =-Q$, B,“'=Q,$ B_""=(Q,+iQ,)B, 

C;'=Q+', C;==-Q1'$, C_"" = -(QI-iQ?)C, 

,!Z,"= - Qzo% , E.)“o = Q1 $ , E_‘” = (Q1 + iQ.,) & 

GIOO =-Q22, Gzoo = Q1 F, G_“” = (Q1 + iQC) Go 
,, (2.25) 

A,'" = - (Q1-iQ?)d,, I-:," = -(Q1-iQ.,)&, 

II,"" = - (Q1 - iQz)II,, C," = - (<I1 - iQ?)C, 
C,"O = (91 i- iQc)G 

3. &I waves produced by oscillations of the body. 1. We will 
derive the basic formulas for tht problem postulated in Section 1, assum- 

ing that the solution of this problem is already known; we will deal with 
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the actual solution in Section 4. 

We take point z in the region E, and draw two contours C, and C_ in 

such a manner that they are located entirely in region E,, and that C1 
encloses the contour of body C but does not contain point z, whereas C, 

encloses both the contour C, and the point z (Fig. 31. For functions 

single-valued in region E, d 1u 2ro/d z = vzr(z), the Cauchy formulas are 

applicable 

(3.1) 

where both contours Cl and Coo are traced in the positive direction, and 

the bar over the letter indicates that a complex conjugate expression is 
taken. We designate 

(3.2) 

Fig. 3. 

It is evident that V”(z) are analytical functions over the entire sur- 

face of the comprex variable z outside the contour Cl, which can be drawn 

as close as desired to the contour of body C, and behave as l/z at infinity. 

‘Ihe functions U,(i) are analytical within the contour C, , which can be 
taken as close as desired to the line y = - 1. 

Therefore, it is possible to consider that the motion of the liquids 
is caused by vortex-sources of densities u,,(() distributed on the contour 

C,* 
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We will utilize this fact to determine functions vIr(z) = drcry”/dz and 

also to represent functions U.(z) in a different form. 

Using formulas (2.12) and (2.221, we obtain complex velocities for the 

vortex-source of intensity Nm = rm + i Q I : 

- i [vAie- iv(z-t) + hoB~e-iL(Z-6] + i),oCi eWz-C) (3.3) 

Considering the equality 

1 .O” 
7= 2 
z--Z‘ s 

e-“.(Z-~) & 

0 

true for y + 7j > 0, taking in formulas (3.3) and (3.4) N, = v,.(<> d(’ 
and integrating along the contour C,, we obtain the complex velocities 

in regions E, and E, 

(c) [Aoe-i’(z-~) + Boe-i’Jz-~)l dt-+ 

c, 0 

-tcos & (C) eiUz--l;) dC (3.6) 

CI 
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- u22 ({) [Eoe---i+~ + Goe--%c~-tq ,jc 

i&(z) =V,(z) + ~~~~(~)[-~~-~e-i”“-~)dA+ 

Cl 0 

+ YGe-’ t~(z-T) & & + ] - \ ufll (I) (~oe-W~-~~ + G,e-%(+a] dt 

0 Cl 

(3.7) 

We introduce the complex conjugate functions. at real A, 

H, (A) = 1 &, (C) e-iAc dC, grn (A) = \ us,,., (C) ei)zdi (3.8) 
G CI 

Interchanging the order of integration in (3.6) and (3.71, we obtain 

iI1 (2) = Y, (2) + i[RI (A) e-iAz (--k+ LI) - I?, (A) eihz~] dh - A,i!& (v) e-ivr-, 

0 

- Bog2 (1.J e--ii.aL + C,H, (A,) &* (3.9) 

iI2 (z) = be, (z) + r[ i7, (A) e-iA* (- & + B) - II, (A) eiLz D] dh + 

0 

Aor (v) + e--iv2 + BogI (A,) c-~‘-~* - C,H, (ko) eihoz 

& (q = v, + yEI (A) e-i”Z (G - -i--j dk - Eop, (v) e-ivz - GOP2 (‘ho) e-iLoZ 

0 
cn 

izz (z) = V’, + 
s 

g2 (A) e-i1f 
p - -2:) 

dA + Eon, (v) e-ivz+ GoHI (A,) e-iAd 

0 

where 

(3.10) 

VI= V, (z) = rgI (i.) e--“,z (- & + G) dh - EoE2 (v) e-iv2 -Go& (Ao) e-iAez 

0 

k.,= V,(z) = rn2 (j.)-ix* (- -$-- + G) dh -t Boll (,)-iv= + Go?& (A,) e-ihaz (3.11) 

0 



1132 V.S. Voitscnia 

2. We will determine the waves on the free boundary and on the bound- 

ary of separation at a distance from the body. On the basis of formulas 

(2.X), (2.19), (2.23) and (2.24) we can write the asymptotic expressions 
of the complete coqlex velocities for a vortex-source of intensity 

NI cos t + N2 sin t (where N,,, = I-“= + i 0,): 

lim {ur (2) - [A-e- iv(z-&-it + B e-ilof:-T)-if + C_eiX,(z-r;)+if]} = () 

XCOD 

lim {ul (2) _ [A+~--iv@-a-i-it + B+e--ih(z-fitil + C+&&-C)-if]} = 0 

x=-P+oD 

(3.12) 

lim (11~ (z) _ [E_e--iV(z--%i~ + C-e-‘Uz-O-it]} = 0 
x-*--Q) 

(3.13) 

lim {uz (z) _ [E+e--iv@-%,+ if + G+e-ih(z-!)+if]} = 0 
s-r -+-OO 

Here 

_4_ = (iXl - XJ &, A, = - (iivI + x2) A,, B, = -(igl + Hz) B. 

B_ = (ix1 - ir2) B, 

C_ = (i!iTl + fV,) CO, C, = - (LV, - N?) CO, E, = -(iSI + X2) E. 

E_ = (ix, - 1v2) E, 

G_ = (ii%‘, - x2) G,, G, = - (~3, + iv?) G,, 

Taking N,, = v2 “(5) d 6 , integrating the expressions (3.12) and (3.13) 

along the contour C,, and using formulas (3.8), we obtain 

lim F,?- - i.4, [H, (v) + iH, (v)] e-’ l(v;Sf) - iB, [p, (A,) + iHI(&,)]e--i(U+t)- 
.x l --0D ‘\ dz 

- iC, [H, (A,) - iH, (&)I ei@ozff) 
1 

= 0 (3.14) 

XILmm T + iA, [H, (v) - iH, (v)] e--i(+-f) + iB, [H<(h,) - i& (A,)] e-iO.+-f)+ 

+ iC, [HI (A,) + iH,(ho)]ei(“~-f) = 0 

lim (dFV2 
- - iE, [H,(v) +iir, (v)] e-i(“z+f) - 

x-r -co 1 d: 

- iG, [HI (A,) + ia2(h,)] e-i(xoz+‘) = 0 

x~f.ll 
( 
‘2 + iEo [H, (v) - $9; (v)] e+(‘lz--l) -i- 

+ iGo [% (U _ in, Q,,)]e-Qb- /)I = 0 
f 

(3.15) 

Taking formula (2.17) into account, it is possible from (3.14) and 

(3.15) to find the asymptotic expressions for functions d w .‘/d z , the 
introduction of which in formulas (1.15) and (1.16) makes ii”possible to 
determine the wave profiles on the free boundary and on the boundary of 
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separation at a distance from the body: 

6, (z) 2 Im (A, [Hi (v) + 27, (v)] 6-i(vx+2) + 

+ (B, + C,) [f% (A,) + iIT (AJ] e-i(i;s+f)), z +-00 

6, (z) z Im (A, [R, (v) - iZ& (v)] e-i(“x-*) + 

+ (U, + C,) [H, (A,) - iH, (&)I e-i(h~z.--I) ), 2 + + 00 

6, (x) z Im (E,e-‘[P, (v) + iZ, (v)] e-i(vx+f) + 

+ C,e+[H, (A,) + iH, (I.,)] e-i(Alxff)}, z-+-cc 

6, (x) z Im (E,e-” [ITI (v) - iH, (v)] e-i(“X-f) + 

+ Cue-+ [H, (Au) - iH, (A,)] e-Qh+f)}, I + + 00 

Denoting 

1133 

(3.16) 

(3.17) 

a,_-~&IIH,(v)+ iiJ,(v)(, fh- = I % + G I I r’;, (U + i% (&I) I 

al+ = I& I (7, (v) - iH, (v) I, 

a+. = e-v 1 E,/ IH, (v) + iH, (v) 1, p2-_ = e+ 1 G, 1 p, (A,) + iH2 (A,)[ 

a2+ = e-v ( E, I/ H, (v) - iH, (v) /, s2+ = e-A8 / G, 1 I PI (ho) - if12 (A,,) / 

it is possible to state the following. On the free boundary and on the 

boundary of separation waves are propagated on both sides of the body, 

and their profiles are due to superposition of two wave shapes, waves with 

lengths 277 /u and 2a/h, . The amplitudes of waves travelling in the 

direction of decreasing and increasing x are respectively equal to aj _ 

and a j + for waves of length 2n /v and are equal to pj _ and 0. + for waves 

of length 277/A,, where j = 1 for the free boundary and 1 = 5 for the 

boundary of separation. 

Knowing the value 

we can write the ratio of amplitudes: 

from which it follows that the waves of the first shape are displaced 

primarily along the free boundary, and the waves of the second shape 
along the boundary of separation. 

3. FSy X and Y let us denote the projections of the vector of pressure 

forces applied to the contour of body C, and by M the moment of these 

pressure forces with respect to the origin of the coordinates. In order 
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to evaluate the mean values of X, Y and M during one period of oscilla- 
tion we will use Kochin’s formulas [ 1 1 

where S is the area bounded by the contour of body C, x,, the abscissa of 

the center of gravity of this area, and C2 any contour located in region 

-l>Imz>- 00 which includes the contour C,. The first terms on the 

right-hand side obviously depend upon the buoyant force. Since 

and 

then 

dw,,” _ 
A = ?& (z) = v, (2) + u, (z) dt 

(3.21) 

s V,“(z) dz = 0, j U,,,’ (z) dz = 0 

cz 

i,(+pz = 2j,i2_(z)Um(z)dz 

From this, taking fortmrlas (3.111 into account and changing the order 

of integration, we will obtain 

dw;, z 

1 i-J dz 
dz = 

. 
cr 

=+f, (A) 7&(A)(- ix + G)dA- 2&H, (v)If?(v) -2G,H, (A,,) rz(h,,) 

” 

dwi2 2 

(3.22) 

5 H dz 
dz = 

C, 

= 2 \ H,(A) II, (i.) (- l; + G) dA + 2E,ff, (v) 3, (v) + X&H, (A,,) 77, (A,) 

0 

Introducing expressions (3.22) into the first formula (3.201, we find 
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We evaluate the moment M in the same manner. Near the point at 

the functions V.(z) have the expansion: 

consequently 

Besides 

lherefore 

I/‘, (2) = &h(C) dC + . . . =+g + . . . 
Cl 

Re 11 zv,2 (z) dzj = Re[qq = 0 

JIcp = pz” P&p - 

or after evaluation 

K Re { 1 [ZV, (z) U1 (z) + zJ’2 (z) u2 (z)I dz) 
2 C* 

(3.25) 

M,, = p*O xc s 
[ I 

+ 
CP 

+. Im {I [Hi (A) dzl -+H,($$](-$++A}+ 

+ ?.$ E,, ln, [P1 cv) (s)” -OH, (v) (z)d + $Go lm [HI PO) ($);, - 
I 

- % PO) (S), 
0 
] (3.26) 

J zU,,,~ (z) dz = 0 
CI 
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infinity 

In the absence of the upper layer of fluid it is possible to put K = 0. 

In this case formulas (3.10), (3.lh), (3.23), (3.24) and (3.261 will 
coincide with the corresponding Kochin [ 1 I formulas. 

For the evaluation of functions H.(h) which express all the basic 

results of the problem, it is necessary to know the expressions of func- 

tions V,,(z) on the contour of body C. However, in case of comparatively 

large relative depth of imnersion, it is possible to obtain fairly good 

approximation by introducing into formulas (3.8) for the functions u*.(z) 

their values uzmaa(z), which correspond to the oscillation of the body 

in an unbounded liquid. It is possible to investigate a series of examples 

similar to those discussed by Kochin 11 1. 

4. Solution of the problem with the aid of integral equa- 
tions. 1. In accordance with the formulas derived in Section 3 it is 

possible to obtain exact expressions of values to be determined, if the 
solution of the problem given in Section 1 is known. Applying the bound- 

ary condition on the contour of the body C, this problem will be reduced 
to the solution of integral evations. 
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Assuning that the contour C is sinple and with a continuous 
we will distribute along C pulsating sourcesnith some density 

cos t + y*(a) sin t 1, where (I is the length of the arc on the 

which corresponds to point 5 (u ) of this contour. 

curvature, 

cylw 
contour C, 

Then the corqlex potentials wzmo (2) can be found in the form 

W2mo (z) = & \ rrn (s) ln [z - ; (o)] do + [I.~,~,* (~1 (4.3 ) 

'C 

where w *(z) functions are analytical in the region E,. Utilizing form- 

ulas (2252) , we obtain 

w2m* (z) = \ {rm (G)[z& lu (2 _<) + rC@ (2-5 +] + E,’ (y)e-i’j (2-f) + 

6 0 

+ E, (j,O)e-i)~(~-% (4.2) 

where 

El’ (Y) = - Tz (u) + , 

E,’ (A,) = - 7% (a) y , 

where we have denoted B,(v) = E, and E, (AO) = C,,. 

It is obvious that, conditions lo-5O from Section 1 are thus satisfied. 

Introducing expressions dwg, O/ dz from (4.1) into formulas (3.81, we 

obtain 

H, (I.) = i j T,,, (0) e-i”:dz (4.3) 

Taking into account that 

$&-ii. (z-f, &. = 1 C&-ii. (z-x) &. _ iBo (y) e-iv (z-% _ iE, (A,) e-i).e (I--,) 
L- 

(Fig. 2) and utilizing formula (4.3), after evaluation we obtain 

where for values v and A,, designated by A, we denote 
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J&(A) = - iJ% (A) [H, (A) -iii& (A)], E, (A), iE, (A) (4.5) 

Functions y,(o) will be found from conditions 

body C, which can be written as follows 

Hpg,i@] =2’,,,(S) 

where 6 is the angle between the exterior normal 
x-axis. 

6’ on the contour of 

(4.6) 

to the contour C and the 

Applying the formulas for the limiting value of the integral of Cauchy 

type on the contour C, we obtain from condition (4.6) an integral equation 

where 

A (s, z) = ~~ (_& [XI!_ + s] - 2i,+ \ C+(z-t) dh} 
z-_i 

f,,, (s) = 2L.M (s) - 2, Re (E, (v) ei (8+*) + ii (LO)& (8--i&} 

2. The problem has thus been reduced to the integral equation 

7 (s) == 118 A (s, q) 7 (2) f& -I f(s) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

for p = - 1. We will seek the 

V. Considering the limit at v 

where 

+f (s) = P c 
; 

solution for sufficiently small values of 

+ 0, we obtain the equation 

A-0 (s; 3) r (0) do + lo (s) (4.11) 

Ko(s, a) = limK(s, 5) = -!-Rc 
I 

,itJ 

- + ;_ ;ia 
ros(n, r) cos (n,r’) 

V-+0 x z-_= -2i) = xr 1 + %P’ 

By introducing 
the line y = - 1, 

fo (4 = t:y I(s) 

r = ( L -. : / , r’ = 1 z - (: - 2i) 1 

contour c’, which is symmetrical with the C relative to 

we will rewrite equation (4.11) in the form 

(4.12) 

considering functions y(s) and f,(s) to have equal values at points sym- 
metrical relative to line y = - 1. 

E+rt it is known that equation (4.12) has a simple characteristic 
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number p = 1, and that all other characteristic nmbers ~1~ are such that 

lpk 1 > 1. Because the homogeneous equation conjugate to (4.12) has a 
unique independent solution y(o) E 1 at p = 1, the condition for a solu- 

tion of equation (4.12) to exist at g = 1 will be that the equation 

be satisfied; this is achieved if the contour C is assuaed not to deform 

during oscillations. 'lherefore, the solution of equation (4.12) will be a 

meromrphic function of p', where the poles of this function are located 

outside of a circle Ip 1 < 1. But then, for sufficiently small values of 
u the solution of equation (4.10) will have only one characteristic nmnber 

within the circle (p ( ,< R, where R > 1. We will show that it is equal to 

unity. In fact, we have 

s h (s, a)ds = s cos (% r) ds + & 

xr 
(4.13) 

c c c c 

where g(z) is au analytical function in the region E2. Therefore, the 

hanogeneous equation conjugate to (4.10) has the solution y(o) = 1, at 

~1 = 1, i.e. the nunber p = 1 is a characteristic nunber. 'lhe condition 

of solution of equation (4.10) at p = 1, having the fona 

(4.14) 

is achieved, provided that 

~c,,, (s) ds = 0, Re [ Jei(@ - i.2) ds] = Rc [ j e-iLz dz] = 0 
C 

Consequently, for a sufficiently small V, the solution of equation 

(4.10) exists and is a meromorphic function of p, and the characteristic 

number p = 1 is not the pole of this function. Since for sufficiently 

small values of Y all poles of the function y(s) are situated outside 

circle Ip I < 1, the solution of equation (4.10) can be taken in the form 
of series with exponent p, which converges in a circle Ip I ,< 1. 

Hence, 

(4.15) 

For p = - 1 we obtain the solutions of our equations (4.7): 

(4.16) 

where 
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%no(~) = I*1 (49 qml (4 = E” (s-1 5) qm. 1--1(g) do (4.17) 

3. Let us find the constants El(v) and Em(X,) through which functions 

f,(s) are exmpressed, and consequently also the solution (4.16). ‘lhe last 

can be shown in the form 

rm(S) = ~VI' (S) + Re [~~IFI('~)~(S, '#)I + ne IE~,I (U 7 (S, &)I 

where y,‘(s) and y(s, A) are the solutions of equations 

r,,l” (s) = - ; h’ (s, c> rm” (3) d3 + 2z~nrn (s) 

7 (s, h) = - EK (s, S) 7 (a, h) ds - 2eia-ixz 

(4.18) 

(4.19) 

(4.20) 

where X assumes values of Y and A,. 

Introducing expressions (4.18) into formulas (4.3) and using the 

obvious equality Fk [ a . b 1 + i lk [ ia . b I = a . b, we find that 

(4.21) 

H,(A.)$iH,(J= H,‘(A) + iH,‘(A) + E, (*t) H (y, A) + E, (h,) H PO, 11) 

where for values X and A, becoming u and A,, we denote 

H,"(A) = i! r,,,’ (a) e-*c d3, H(h, A) = ijy(s, A)eC*;ds (4.2?) 

Introducing in formulas (4.5) evressions (4.21) at A = Y and A = A,, 

we will have to find two equations for E(V) and E,(h,), from which we 
will find 

(4.23) 

E, (Y) = - ;-, E, (A,) = - 3, E, (v) = iii, (v), E, (A,) = iR, (A,,) 

where 

aI = E,(v) E, (-A,,) H (‘ho, v) [H,” (A,,) - iHzo (Ao)j + 

+ &(v)[l + i&(b,)H(Ao, A,jl [H,“ (v)-im 

x2 = E,(v) E, (A,) H (v, A,) [Hm- iH,” (v)] + 
~ - 

$ iE, (h,) 11 + iE, (v) H (v, v)I [H,” (A,) - iH,” (&)I 

B = EO (v) -&I 0~) H (v, Ao> H (h v) + 11 + ifi, (v) 11 (v, v)l 11 + i& 0~) H (ho, &,)I 
(4.3) 
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Using equations (4.7) and equalities (4.13) and (4.14) it is not 
difficult to prove equalities 

$&)~~ = 0 

Using (4.25) we obtain from (4.22) at Y = 0 

(4.25) 

LHm” (h)l‘\ 0 = 0, [H (h R)li.__b=0 = 0 

from which it follows that for sufficiently small values of u the de- 

nominator p in formulas (4.23) is different from zero. 

Determining the values of E.(v) and En(h,) from formulas (4.23) we can 

then find functions y”(s) from (4.18). Introducing the latter into 

formulas (4.3) we find functions H”(X), which permit the determination of 
the principal values of the problem according to the formulas in Section 

3. Considering the case of a sufficiently small length (compared to unity) 

of contour C, it is possible to prove the convergence of the process of 
successive approximations at any value of parameter v by application of 

the principle of transformations of decreasing scale. 
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