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The problem on steady oscillations of a body of arbitrary shape under a
free surface of an infinitely deep liquid has been solved by Kochin [11.
The same problem for finite depth has been investigated by Haskind [2 ],
using Kochin’'s method.

Here we investigate a plane problem of wave motions induced by oscilla-
tions of a body under a surface of separation of two liquids, by Kochin’s
method; the layer of the lighter upper liquid of finite thickness has a
free surface, and the lower liquid has an inifinite depth.

1. Statement of the problem. let the body oscillate periodically
under the boundary of separation (Fig. 1). We will investigate infinitely
small oscillations of a body, making usual assumptions of linear wave
theory. We assume that waves propagate on both sides of the body, so that
the liquid velocities are everywhere bounded and approach zero as y” »-o.
The boundary conditions on the free boundary, on the boundary of separa-
tion, and on the contour of body C, will be transferred on the lines
y’ = 0, y° = —d and on the contour C respectively; this last is assumed to
be stationary.
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Assuming a potential motion, in this analysis we introduce the velocity
potentials (DJ (x*, y*, t°), stream functions ‘l’ “(x*, y*, t’) and the
complex potentials

Wi, t'y=®;/(«, ¥, 'Y+ ¥y @, vy, t) (1.1

where 2” = x” + iy’ and the index j is equal to 1 and 2 for the upper and
lower liquid respectively.

By usual means we obtain the condition on the free boundary

ATV ALY B 1.2
[6t'2+g6y’],=n“—0 (1.2)
and two conditions on the boundary of separation
My’ o, ']

T =0 1.3
[()1/ ay Y =—d ( )

roray oy’ P2 (() M.’ oMy’ ]
¢S5 - =1 1.4
l\dt’ e Ty ) £1 = T8 ay’ ) v =—d (-4

The equations of the free boundary and of the boundary of separation
have the form

, 1 (6D o 1 oMy’ am,’
8. =__[_'] "z =_.__[ AL _=]
1 (x ) g a ul.,o’ 02 (x ) ; (PZ — Pl) Pl at’ P2 at’ ot (1 .5)

where 81’(x ) is measured from the axis x”, and & '(x ) from the line

y' = -d.

Since boundary conditions are linear we may consider only purely har-
monic oscillations of the body with frequency k, determined by the formula

U’ == vn) (8') COS kt' 4= vpo’ () sinkt’ = v, (8", 1')
where v, * is the normal velocity component of one of the points of the

contour C to that point there corresponds an arc length s’ measured from
some fixed point on C.

Then for function ®,”(x", y’, t’) we have the condition of streamline
flow on C

oMy’
un

=vq (s, 1) 1.6)

Assuming the oscillations of fluids to be steady, we take
@) (z', ¥, t') =gz, y)coskt’' + g5’ (2, y')sinkt 1.7

where ¢, “(x*, y’) = Be wj"(z’) if m is equal to 1 and 2. We will then
have
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Wi (Z, t'y =w;j’ (z')cos kt’ + wj,’ (z') sin kt’ (1.8)

The boundary conditions (1.2}, (1.3), (1.4), (1.6) will be rewritten
as follows:

09 m' . ] [ 001’ 0Py ]
[g oy Ko pim u’=,o_0’ oy oy Jy=—d 0
oo do._* (1.9
Bm _ pag N Prfp TPem  ga s =
[(g oy k (le) o (g e k2oym )]y,=_ , =0
ae,..’ ,
o = Vum’ (8)
We introduce dimensionless quantities, denoting
Z=2d. W;=Wikd,  wjm= wjmkd?
T Kd
=, = =0 = (1.10)

Denoting by E, the region occupied by the upper liquid, and by E, the
region occupied by the lower liquid, we can formulate the problem in the
following manner.

It is necessary to determine functions w,,°(z) and w, °(z), which are

analytical in regions ['.'1 and E2 respectively, and which satisfy the con-
ditions

09,,,°
1°. 0';" — v’ =0 for y =0 (1.11)
%, ° P’
ge, Fm _ Tom fory=—1 (1.12)
oy vy
aq)mo /an ° o\
5 (T - "'f'm‘°> — B2 o; — e’ )= 0 fory=—1(1.13)

4, On the free boundary and on the boundary of separation the waves
move out on both sides of the contour of body C.

5. In regions E, and E, outside the contour C the velocities are
bounded and approach zero as y » — .

99gm°
an
Using relations (1.7), (1.11), (1.2) and (1.13), the equations of the

free boundary and of the boundary of separation can be written in a final
form

6°.

= vpm ($) on C (1.14)
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_ du® duwyy°

8, (x) = —Im[ 5o Sint — ——— costJy=o (1.15)
dw,;° . dw.72

Bz(x)=lm[ S, sint — —~— cost]= (1.16)

where j is equal to 1 or to 2.

2. The case of a pulsating vortex and a source. Assume at some
point { = £ + in of the region — 1> Im z > - « a pulsating vortex of
intensity (T, cos t + I', sin t). Then from functions v °(z) it 1is
possible to separate the singularities at point {

Wim® (2) = Wim (2) + Fm (2) (2.1)
where w“(z) and w, (z) are functions, analytical in regions 0> Im z >
~ land- 1> Im z > — = respectively, whereby w; qS + 1y, and

T -
Fp(2)=——1n Z:_Z (2.2)

Differentiating equations (1.11) and (1.13) with respect to x, we can
rewrite the first three boundary conditions from Section 1 in. the form

P\ m 09
l o:u;y - 01' ]u=o =/ 1m($) (2'3)
Pym  9%m ] _
[ oy oy Jy=—1 0 (2.4)
0°®1m 0P m o) FPom 0Pam _ 0
[( Gzoy | o >_P2 k vwoy ' oz >]u=—-1— (1—=22") fam(z)  (2.9)
where
dF,, &F, . dFg,
Jim(z) = Im l = 4y - ]u——-o , Jom () = Im [_d:-_ + iv T]u=—1

(2.6)
Introducing the expressions for F (z) in formulas (2.6) and using the
known equations

L] (-]
vl _ S e—*ivlcosdhad\, cilout/ S Xe—A 1V 1% cos hrdh
(z* + y°) .

we obtain
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[+

r
Jon(@) = — == e cosh (z— &)
0
N ‘ @2.7)
fam (.’C) = —:" 5 e (+.sinh . -i- v cosh 7) cos i (.’C _ E) di

1}

We seek the solution in the form of Fourier integrals

wim(2) = T { ([40) +iBMIeHED 4 [CQ) +iD ()] ene=0) 2 (2.8)
0
wym (2) = T { [£(V) + iG ()] e=06=D 2
[

using condition 5 to ensure boundedness of functions du3_°/dz.

Introducing the functions v into conditions (2.3), (2.4), (2.5) from
(2.8) and using relationships {2.7), we obtain the equations for determin-
ation of coefficients, from which we will find

AMN=0, B _—_%{ L(N)[2v—x (A=)

K—vT (N
— 2 +ver —(h—W]| =B
CN=0, DM =%[FN et 1 1A +9)—(h—r)eR]) =D
(2.9)
N _2am
EM=0, M=o =C
where

LX) = —v 4+ x(A2sinh? kA —2cosh? })

TO)=2v+x[0+V)e?—(h—v)] (x=p°—1) (2.10)

It is easy to see that for any v > 0 the equation T{(A) = 0 has one
positive root A = A, and one only. Since the integrands for functions
dwj./dz have two simple poles A = v and A = A,, on the real positive
semi-axis A, we will take the Cauchy principal values of the integral.

2, To find the general solution, to the obtained functions w. (z) we
. : in
will add the potentials of the free waves
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Wym™ (2) = A°me=i¥(=3) B, Ce~ih(z—32) 4 (% iMz—0)
(2.11)

Wem™ (2) = Eple—ive—0 4 G %~ hlz—0)

where A °, B.°, ..., G.° are constants. Therefore

wim® (2) = _;’E. In Z—g + i S [Be—il(z—f) +
' 0

114 z —

F Deie=0] X 4 g p=ine=D | Boe—tua=D 4 Cpoeiha=n  (2.42)

r
Wor® (2) = 1 |p

wt

7»—“
2 b

o
s—¢ + i Sce—n.(z—':) dx + Emoe—ivu-‘:_) + Gmoe.-m,(z—,?;)
A
1]

The unknown constants will be determined from condition 4°, according
to which the waves propagate in both directions from the vortex.

To determine the asymptotic values of functions dwzi/dz for x < 0, we
will write them in the form

d R o L . 5
';’zm — me Ge—iMz—0) d)\ + 2il, T ((:; e_zv(z—t).'_
Ly
+ 2T e e g

(Ro — ) T (%)

where L 1is the contour in the plane of the complex variable A (Fig. 2),
and

7'00= (o,

Integration by parts shows that the integral along the contour,

Fig. 2.

L, approaches 0 as x » ~ o, consequently

dw - -
lim { “am [T B0 4 iTpGoe—the =D 1}-:0 (2.13)
X——Ca0
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where
_21.(v) _ 2L (\g)
EO - /lv (V) 9 Go = ___————()\0— V) ,l,, (10) (2.14)
Utilizing the integral along L _, we similarly obtain
. dw, . L= . i g~
Jim {2 B teD TGOl = 0 (2.15)

Inasmuch as the waves propagate in both directions from the vortex,

the asymptotic expressions for the full complex velocity can be written
in the form

limm {%ﬁz — [E ez~ —itf G _e—inz—0 —it)] =0
(2.16)
“Too { "Z? — [E,e—ie=D +it 4 G e—intz=D + 1t ]} =0
Taking fornula (1.8) into account, we will have
dwv . dw; ° dw..°
_dz_’-z %‘——-cost-}- u;’: sint (2.17)

Introducing the expressions (2.13) and (2.15) in the formula (2.17)
and then comparing it with (2.16), we finally obtain

E° =i, to Ep =i 2o
E_° = (i, —T,) E,, E°=—(l\+Ty)E,

° . Gy ° o Go (2.18)
G,° = —il, 70 ] Gy’ =1l o

G_o: (iFl'—Fz)Go, G+C= —-(lFl +F2)Go
Similarly it is possible to find the asymptotic expressions for d W /dz

X — dz

aw T s o
{ dzl — [A,Se—ivDHit . B e—inz—DHit L C Ceihtz—) u]} =0 (2.19)

}im { W [A_Se—a=R—it 4 B Ce—ilz—0~it 4 (_%idlz—0)+it ]} =0

lim
E .

and also the values of the unknown constants

(2.20)
AP =—iTy % 4= 20, 42 = (N —Ty) 4y, A,° = — (i, +Ta) 4,
. ~ B o x B o . ° .

B, =—1F2)\—0°, B, =1F11_:’ B_° = (il''—T;) By, B,° = — (iI', 4+ T,) B,

€y = —iT, %", Cy° =il f—" C° = (iTy +T5) Cyy €,° = — (ily —T3) Cy
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where

2L(v) _ _ L) [2v—x(a—V)] xL (Aa) o,
b=y =P Bo==oreg 0 C=smas e @2

3. For a source of intensity ( Q cos t + Q2 sin t ), situated at the
point { = £ + in, it is possible by the same method to obtain complex
potentials

w@=5rlE@E—0G-0+ Qmg[Be"“’“U—De“““)]
0
oo . s 00 : = oo ° Qm 5
+ Ape=E0 4 By emihz=0) 4 Cpy MR, w2 (2) = 3, 10 (z—=0)(z—0) +
v . 3 dA 00, iw(z—D) oo — )
+ QmSGe 20 X | E etve=D) 4 G, ez (2.22)
[}
and the asymptotic expressions of complete complex velocities

Jim {dWl _ [ A_Pe—iv (2—0)—it | B 0p—irz—T)—it | C_°°ei7\.(z—-§)+“]l =0

x—co| 42 ‘
- {‘%? (Aot T+ . B ce=thta—D it C+oeix.,(z—t)-il]} =0 (2.23)
: x}fi‘m {f%lzf_g — [, fe—ivaTrtit 4 G~L'~‘°e-“»(’*f’+“]jl =0 (2.24)
where

A co A %o
A4°=—0:, AT=QT, AT=(Q+ Q)4

B oo Bn oo '
Bloo=_02)‘;°’ =er, B_ = (01+IQ2) BO

o= mm R, LT e (=0
Ee=—Q2, Ef=0%, E=(0+iQ)E

Gloo _ ()- e Gz°° = 01 % s G *° = (Ql + IQ-‘) Go (225)

A+CO = - (01 - l()‘.l) AO! ,:+CC‘ = (Ql - 101) EO
B = — (Qu— Q) By, G = — (0, — Q)G
C.2° = (0 +iQ:)C,

3. On waves produced by oscillations of the body. 1. We will
derive the basic formulas for the problem postulated in Section 1, assum-
ing that the solution of this problem is already known; we will deal with
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the actual solution in Section 4.

We take point z in the region E, and draw two contours C; and C_ in
such a manner that they are located entirely in region E,, and that C;
encloses the contour of body C but does not contain point z, whereas C_
encloses both the contour C, and the point :z (Fig. 3). For functions
single-valued in region E, dw,,°/dz=v,,(z), the Cauchy formulas are
applicable

— 1 ¢ 2am (D) 1 ¢ Zem ()

nam(2) = | P Al — L | e (3.1)
b Coo

where both contours C& and C_ are traced in the positive direction, and

the bar over the letter indicates that a complex conjugate expression is

taken. We designate

1 ¢ (0
V() = 5 | ot
C
© (3.2)
1 ¢ (@)
Un(d)=—g5 | 2ol
Cm
y

Fig. 3.

It is evident that V.(z) are analytical functions over the entire sur-
face of the comprex variable z outside the contour C,, which can be drawn
as close as desired to the contour of body C, and behave as 1/z at infinity.
The functions U,(z) are analytical within the contour C_, which can be
taken as close as desired to the line y = - 1,

Therefore, it is possible to consider that the motion of the liquids
is caused by vortex-sources of densities v, ({) distributed on the contour

.
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We will utilize this fact to determine functions v, (z) = dw{ /dz and
also to represent functions U.(z) in a different form.

Using formulas (2.12) and (2.22), we obtain complex velocities for the
vortex-source of intensity N, = ' + iQ_:

Um (2) = oo —— — 5+ ——=+ Nn \ Be—*=0d\ — N, & D eire—0g) —

0 0
— i [vAme= =0 4 N Bpe—itG—0] 4 heCom €420 (3.3)
N 1 Nm 1 — . - . . . -
Usm (2) = 47':' ppey R + Nn S Ge— =D ) — [ [vE e V-0 4
0
4+ NG = 2u(2=0)] (3.4)
where - —
A ~—uV2’—4v—°, A2=z’N1?, Bl=—zN2§"—, B —le%
9 ) 0
C;=—iNocl‘» Cg:iNl'c—O'v El ='—iN21:—0
ko ko v
B =iV B, Cl=—iN, D, Gi=iN, % (3.9)
0 1]

Considering the equality

-]

1 . -
—— = i\ =MD g
=i\ d

0
true for y + n > 0, taking in formulas (3.3) and (3.4) N_ = v, () d¢
and integrating along the contour C,, we obtain the complex velocities
in regions E, and E,

7 (2) = V1 (2) + ivn () [— o ge—“(‘—z) d\ - SBe—”(Z—E) dr]df—
1 0 0
— (o @[ Dere—0 @] a2 — o (0 (oD 4 Bre—ruieD dl+
C, 0 C:
+ c(,\ D2s () €R—0) T (3.6)
&
22 () = Va () + {002 (1) [ — o {260 4 | BemineD dn]dl —
Cy (1] 0
— {2 [ Devev ar )t + (ony (O 1Auee=D 4 BoeMe01dl —
‘C; 0 C,

— cu\z';m (2) eiz=0 g,
&



Oscillation of a body under two surface-separating liquids 1131

va (2) = V, (2) + S 221 () [— < §°e—i>-<z—f> dh + ‘i,Ge—“(‘—E) d)\] d& —
[ 0

1

— g 2a3 (0) [Epe=0—0 4 Goe—retz—0)] dF

C
70 (2) =V () + \on (O | — 5, (e Dar +
G (1}
+ Sce—wz—B dn| T + { o0 (O (B0 4 Geirie=B1l (3.7
1] C:

We introduce the complex conjugate functions. at real A,

Ha) = {om@e0dt, Hn()={om@e%d  (38)
C, C,

Interchanging the order of integration in (3.6) and (3.7), we obtain

o (2) =V, (2) + S [F L (h) =iz ( et B) —H,(\) emz)] dh — AT, (v) et —
0
— BoH, (1o) et 4 CoH y (1) o2 (3.9)
T10 (2) =Vy(2)+ S [172 (h) e—irz (__ 711; + B) — Hy(2)eiz D] dn +
0

AHy (v) + €= 4 By (o) e= — Gyl (ko) €z

o () =V, + S I, () e <G - 21;\) dh — EoH, (v) 6=t — GoH, (Ay) €=

0

vy (2) =V, + SfT,(x) e—irz (G — 21;) dh + EoH, (v)e= 24 Gy H, (hy) e—e2

where
(3.10)

ViV () = VL () e (= G G)dh— B, () e — Gl (ho) =
[/}

2r

Vo=Va(z)= & T, (1= ( — 2t G) A+ EoH, (v)=% 4 GoH,y (ho) e= (3.11)
(1]
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2. We will determine the waves on the free boundary and on the bound-
ary of separation at a distance from the body. On the basis of formulas
(2.16), (2.19), (2.23) and (2.24) we can write the asymptotic expressions
of the complete complex velocities for a vortex-source of intensity

N, cos t + N, sin t (where N, =T, + iQ,):

lim {u, (z) — [A_e—iV(Z—E)—i! +4 B_e—i\(x=0—it 4 C_gihz—0)+il]} = 0
= _ - (3.12)
lim {u, (z) —[A,e= =0+t 4 B e z=0+it 4 C ehz—0)—il]} =
x=-—+-+00

lim {u,(z) — [E_e—G~0-il 4. G_e—Mz—D—it]} = 0 (3.13)

X-»—00
lim {u,(z) — [E,em -0+t L G e—ihle=04il]} = 0
Here o
A= (N, —N)dy, A,=—(iN,+ Ny) A4, B,=—(N,+ N;)B,

B_= (iN;— N.,) B,

C_ (l‘/\'l + JVZ) Co, C_’_ = — (ilel —_ Ng) Co, E+ = —(INI + IVZ) Eo

E__ = (iNl —_ j—V—.J) Eo
G_= (i—Nl - X2) Go, G, =— (l_j—vl +—1V2) Gy

Taking N = v,,({) d{, integrating the expressions (3.12) and (3.13)
along the contour C,, and using formulas (3.8), we obtain

im (S04 iy [, () + By ()] 05+ — iBy (7, (hg) + il (ho)] =i —

A\
— iCo[Hy (o) — iH (h)] €500 | = 0 (3.14)
lim {‘%"—1 4 (4o [, (v) — iH, ()] =100 4 iBy [H (ho) — i, ()] e=H02=0 4
x—>-tco -

+ iCo [Hy (No) + ng()\o)]ei(W—t)} =0

lim {df,‘ — B [Hy(v) +iHa ()] e —

— iGo (Hy (No) + iH (M) G—i(k“'*'”} =0 (3.15)

lim {d——(’f} A iEy [Hy (v) — iHy (v)] e=it2=h o
X400 ~
+ iGo [Hy (1) — iHy (ho)le—10+2" 1)} =0

Taking formula (2.17) into account, it is possible from (3.14) and

(3.15) to find the asymptotic expressions for functions dwj‘:/dz, the
introduction of which in formulas (1.15) and (1.16) makes it possible to

determine the wave profiles on the free boundary and on the boundary of
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separation at a distance from the body:

8, (2) = Im (4o [H, (v) + iH, (v)] e~i0x+D) 4
+ (Bo + Co) [H (ho) + ill, (\)] e=i0+D} 2 oo
8, (2) = Im {4y [H, (v) — iH, (v)] e=it==0 4 (3.16)
+ (By + Cy) [171 (M) — ”72 (M) emiRax=D } ' 2 4 400
8, () = Im (Eye— [H, (v) + iH, (v)] e=i0x+0) 4
+ Goe [ H, (\y) + i (\)] e} gy oo

— 3.17)
b (2) = I (Eye— (7, (v) — i, ()] e=i0%=0 4
+ Gue ™ [H) (N) — iHy (k) 6700} 7 4o
Denoting
a = | Aol | Hy () + iH ()], Bim =By + Col | H, (o) + iH, (M) ]
X4 = !Aullf_fl(_")—im(l)[, Pi+ =By +Co||_ﬁ1 ()\o)‘iy—z M| (3.18)
o =V | EH, (v) +iH(v)], Bo— == e |Gy | | Hy (No) + iH 3 (M)
py = e | Eg|| H, (v) — iH, (W), Bop = e[ G| H, (ho) — i (ho) |

it 1s possible to state the following. On the free boundary and on the
boundary of separation waves are propagated on both sides of the body,

and their profiles are due to superposition of two wave shapes, waves with
lengths 27 /v and 27 /A, . The amplitudes of waves travelling in the
direction of decreasing and increasing x are respectively equal to a;_
and a;, for waves of length 27 /v and are equal to 3. _and B;, for waves
of length 27 /A, where j = 1 for the free boundary and j = 2 for the
boundary of separation.

Knowing the value

, 2%l () .
B ( —_ — —i,'_‘l:__e—‘.’/\u
ot Co o =T (A)
we can write the ratio of amplitudes:
a, a, 8, _ % By T )
ud 3 e—V’ -+ —_ (!**‘J’ f'— _ _c___. s M = i (0)19)
- %+ B % Bi+ *

from which it follows that the waves of the first shape are displaced
primarily along the free boundary, and the waves of the second shape
along the boundary of separation.

3. By X and Y let us denote the projections of the vector of pressure
forces applied to the contour of body C, and by M the moment of these
pressure forces with respect to the origin of the coordinates. In order
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to evaluate the mean values of X, Y and M during one period of oscilla-
tion we will use Kochin's formulas [1]

ot i 5y :S [ ( d:z; )2+ (dr;z )2] dz

N

M, = o o "" dwgne  sdigpa (3.20)
M =0t = 2§ (534 (52
C

where S is the area bounded by the contour of body C, x, the abscissa of
the center of gravity of this area, and C, any contour located in region
~ 1> Im z > — o« which includes the contour C;. The first terms on the
right-hand side obviously depend upon the buoyant force. Since

dw,,° -
nd —— = Um @) =Vn(2) + Un(z) (3.21)
Sv,ﬁ(z)dz =0, gUmz(z)dz =0
CS Cl
then 0.2
S ( d";,zm )dz = 28 EZm(z)Um(z)dz

From this, taking formulas (3.1l1) into account and changing the order
of integration, we will obtain

dw, \2
21 _
S(dz)dz__
C,

=2{H, ) H0)(— 5, + G )dh— 2EeH, () Hy (v) — 26oH: (ha) Hy ()
. (3.22)
dw,\2
%( d:”) dz =
[N
=2\ Ha () 11500 (— i + G+ 2642 () Hy 0) + 260H. (o) Hy ()
0

Introducing expressions (3.22) into the first formula (3.20), we find

You= oSt L2\ (1L 01+ 1 12| = S\ T2 0912
(1]

]

zms

+ | Hy ()] 2] G\ (3.23)

Nep  pdoo T [Hy () 1, ()] + p°Go Im [H | (M) H, (0] (3.24)
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We evaluate the moment M in the same manner. Near the point at infinity
the functions V _(z) have the expansion:

1 } H_ (1)
Vi (&) = gz oo (O 8 oo ==
consequently G
0
Re[ngm2@)dz} Re{———}l]_-o
C,
Besides
SzUm2 (2)dz=0
(o}
Therefore
Mep, = p° [2eS1ep — £5- Re { ; 12V, (2) Uy (2) + 2V, (2) U, (2)] dz) (3.25)

or after evaluation

dH1

Moy =’ [25], + & I {ai[ﬁl( NI+ H ) 2 (- 6)a) +
+ & Bolm [H,0)(252), — Ha ) ()] + & Golm [H, 00) (T52), —
— B, 00 (G0, ] (3.26)

In the absence of the upper layer of fluid it is possible to put «=0,
In this case formulas (3.10), (3.16), (3.23), (3.24) and (3.26) will

coincide with the corresponding Kochin [1] formulas.

For the evaluation of functions H, (A) which express all the basic
results of the problem, it is necessary to know the expressions of func-
tions Vé.(z) on the contour of body C. However, in case of comparatively
large relative depth of immersion, it is possible to obtain fairly good
approximation by introducing into formulas (3.8) for the functions v, (z)
their values v,__ (z), which correspond to the oscillation of the body
in an unbounded liquid. It is possible to investigate a series of examples
similar to those discussed by Kochin [1].

4. Solution of the problem with the aid of integral equa-
tions. 1. In accordance with the formulas derived in Section 3 it is
possible to obtain exact expressions of values to be determined, if the
solution of the problem given in Section 1 is known. Applying the bound-
ary condition on the contour of the body C, this problem will be reduced
to the solution of integral equations.
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Assuming that the contour C is simple and with a continuous curvature,
we will distribute along C pulsating sources with some density [y, (o)
cos t + y,(0) sin t ], where o is the length of the arc on the contour C,
which corresponds to point { (o) of this contour.

Then the complex potentials w, °(z) can be found in the form

won (2) = 7= ST’" (0)In [z — % (0)] d3 4 won* (3) (4.1)
C

where w, *(z) functions are analytical in the region E,. Utilizing form-
ulas (2. 52) we obtain

wam* (2) = &{Tm (“)[ In(z—17%) + SGe"iA (=9 d’] En (ve i =9 4
¢

+ B (ho) 09 | ds (4.2)

where E (v) )
Ey () = —ya(a) 220 Ey (v) = 1 (o) 222

Eo 0\0) 0(7\0)

Ey' (M) = — a2 (0) —S— Ey' (ho) = 11 (5) 55—

where we have denoted E,(v) = E; and E ()to) =G

It is obvious that conditions 1°-5° from Section 1 are thus satisfied.

Introducing expressions dwzlo/dz from (4.1) into formulas (3.8), we
obtain

Hyn (1) =i qm(a)ei?%ds (4.3)
[

Taking into account that

-]

§ Gemtr =% g = [ G&Ti* =0 d). — iEq (v) e =0 — iE, (Ag) €70 =)
) L=
(Fig. 2) and utilizing formula (4.3), after evaluation we obtain

dwy,.° 1 ‘ s
d2z STm(c){z,t[z_c + z—é] zLSGc x( ﬁ)d)\}dc+

+ En (e 4 Em (ho)e™™* (4.4)

where for values v and )‘0' designated by A, we denote
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E\(A) = —iEo (A) [H; (M) —iH, (A)), Es(A), iE\ (A) (4.5)

Functions y (o) will be found from conditions 6° on the contour of
body C, which can be written as follows

Re [dlzzzmo e“’] = Tpm (8) (4.6)

where 6 is the angle between the exterior normal to the contour C and the
x-axis.

Applying the formulas for the limiting value of the integral of Cauchy
type on the contour C, we obtain from condition (4.6) an integral equation

Y (8) = _&\;K(b’, 3)Ym (3)ds + fin (s) (4.7
where
A (s o) —Rold [ e'® et ] 9; wSG ~ik(z=0) g
(s, o) = s ——Z—C+:—E — 2ie e } (4.8)
Jm (8) = 2tnm (8) — 2Re {Em (v) e = 4 Ep, (1) €' B—02)} (4.9)
2. The problem has thus been reduced to the integral equation
7 (s) = uCSA(s, 3) 1 (s)ds + [ (s) (4.10)
for p = — 1. We will seek the solution for sufficiently small values of

v. Considering the limit at v » 0, we obtain the equation

1(5) = [ Ko, 9)7(s)ds + /o (s) (4.11)
where ¢
i i6 . .
Ko(s, o) = limA (s, g)=LRC{ ° 4 e .]= cos (n, 1) + cos (n,r’)
v->0 1 z—5 z — (& —2i) nr =r'
fo(s) =limj(s)
r=lz—=3, r=lz— (-2

By introducing contour C’, which is symmetrical with the C relative to

the line y = -~ 1, we will rewrite equation (4.11) in the form
1) =u{ =0y (@) ds + fos) (4.12)
cic

considering functions y(s) and f,(s) to have equal values at points sym-
metrical relative to line y = - 1.

But it is known that equation (4.12) has a simple characteristic
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number g = 1, and that all other characteristic numbers p, are such that
[#, | > 1. Because the homogeneous equation conjugate to (4.12) has a
unique independent solution y(o) = 1 at g = 1, the condition for a solu-
tion of equation (4.12) to exist at y = 1 will be that the equation

$Jo(s)ds =0

¢
be satisfied; this is achieved if the contour C is assumed not to deform
during oscillations. Therefore, the solution of equation (4.12) will be a
meromorphic function of u, where the poles of this function are located
outside of a circle |p| < 1. But then, for sufficiently small values of
v the solution of equation (4.10) will have only one characteristic number
within the circle |p| < R, where R > 1. We will show that it is equal to
unity. In fact, we have

81{(3, o)ds=g£‘35—%ﬂds+Re[gg(z)dz]=gfﬂ'¥ds=1 (4.13)
C

C C C

where g(z) is an analytical function in the region E,. Therefore, the
homogeneous equation conjugate to (4.10) has the solution y(o) = 1, at
p =1, i.e. the number z = 1 is a characteristic number. The condition
of solution of equation (4.10) at p = 1, having the form

CSf(S)ds =0 (4.14)

is achieved, provided that

Y2nm (s)ds = 0, Re[ {ei® =72 gs] = Re[[e*2dz] =0
c c c

Consequently, for a sufficiently small v, the solution of equation
(4.10) exists and is a meromorphic function of p, and the characteristic
number g = 1 is not the pole of this function. Since for sufficiently
small values of v all poles of the function y(s) are situated outside
circle |p| ¢ 1, the solution of equation (4.10) can be taken in the form
of series with exponent y, which converges in a circle |p|< 1.

Hence,
1(8) = 2 ulqi(s) (4.13)
=0
For 4 = — 1 we obtain the solutions of our equations (4.7):
tm (8) = X (— Digmi (s) (4.16)

=0

where
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Gmo(5) = fm(8),  gmi(s) = .g K (s, 3) gm, 1~1(3) ds (4.17)

3. Let us find the constants E (v) and E_ (A)) through which functions
f.(s) are expressed, and consequently also the solution (4.16). The last
can be shown in the form

Tm (s) = 1" (s) + Re [Ewn (V) 7 (s, ¥)] + Re [Ew (ho) Y (55 Ro) (4.18)

where y °(s) and y(s, A) are the solutions of equations
n qu

() = — § K (s, 9) 1" (3) d3 + 20nm (5) (4.19)
(s M) =—]K (5, 9)y(o, N da— 207 (4.20)

where A assumes values of v and AO.

Introducing expressions (4.18) into formulas (4.3) and using the
obvious equality Re [a.b] + i Re [ia.b] = a.b, we find that

L (4.21)
Hy(A) + iH3 (A) = Hy(A) + 2 (A) + E{O) H (v, A) + E; (o) H (e )

where for values A and A, becoming v and A,, we denote

Hyl (A) =i § 10’ (o) e d3, HO A =ify(s, Neibdids  (4.22)
4] C

Introducing in formulas (4.5) expressions (4.21) at A= v and A=A,
we will have to find two equations for E(v) and E,(A;), from which we

will find (4.23)
E()=—3 Ll)=—75 E0) =0, E0) =ik
where

ay = £y (v) Eo (N) H (hoy V) [H,° (No) —iH° (W)] +
+ 1Eo () (1 + iEo (o) H (ho, M) [H* (v) —iH* (V)]
2= Ey(v) Ey (ho) H (v, N) [Hf&_— iH," () +
A+ iEq (M) 11 +Eq () H (v, WITH,® (ko) — iH* ()]

B=Eq() Eq(2) H (v, ho) H (N, V) + (1 + iy (v) H (v, V)| [1 4 EEq (o) H (Ro, )]
(4.24)
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Using equations (4.7) and equalities (4.13) and (4.14) it is not
difficult to prove equalities

éxm(s) ds =0 (4.23)

Using (4.25) we obtain from (4.22) at v = 0
[Hn® (A)]a ¢=0, (H( A)er-o=0

from which it follows that for sufficiently small values of v the de-
nominator 8 in formulas (4.23) is different from zero.

Determining the values of E _(v) and E,(A;) from formulas (4.23) we can
then find functions y _(s) from (4.18). Introducing the latter into
formulas (4.3) we find functions H,(A), which permit the determination of
the principal values of the problem according to the formulas in Section
3. Considering the case of a sufficiently small length (compared to unity)
of contour C, it is possible to prove the convergence of the process of
successlve approximations at any value of parameter v by application of
the principle of transformations of decreasing scale.
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